PROJECT PROFILE ON SOLAR LIGHT SYSTEMS

PRODUCTCODE

(i) ASICC : 79103

(ii) NIC : 29307

QUANTITY AND STANDARD : MNESSpecification

PRODUCTCAPACITY :

SOLARLANTERN : 24000 P.A. @ Rs. 2500/- apprx.

SOLAR STREET LIGHT SYSTEM : 24000 P.A. @ Rs. 6500/- apprx.

SOLAR HOME LIGHT SYSTEM :24000 P.A. @Rs.18500/-apprx.

:Value: Rs 66,00,00,000/-

YEAR OF PREPARATION : 2020-21

PREPARED AND UPDATED BY : ELECTRICAL DIVISION

MSME - Development Institute, Shaheed Capt. Gaur MargOppt. Okhla Industrial Area, Estate Okhla,

New Delhi:- 110020.

Tele. (91) 011-26838269, 26838068, 6838118

Tele/Fax No.: (91) 011-23838016.

1. Introduction

A Solar lantern is a simple application of solar photovoltaic technology, which has found good acceptance in rural regions where the power supply is irregular and scarce. Even in the urban areas people prefer a solar lantern as an alternative during power cuts because of its simplemechanism.

Home lighting System is powered by solar energy using solar cells that convert solar energy (sunlight) directly to electricity. The electricity is stored in batteries and used for the purpose of lighting whenever required. These systems are useful in non-electrified rural areas and as reliable emergency lighting system for important domestic, commercial and industrial applications. The SPV systems have found important application in the dairy industry for lighting milk collection/chilling centers mostly located in ruralareas.

Solar Street Light system is designed for outdoor application in un-electrified remote rural areas. This system is an ideal application for campus and village street lighting. The system is provided with battery storage backup sufficient to operate the light for 10-11 hours daily. The system is provided with automatic ON/OFF time switch for dusk to down operation and overcharge / deep discharge prevention cut-off with LED indicators.

2. MarketPotential

The demand of Solar Light Systems is day by day increasing due to it works on consumption of NATURAL SOURCE OF ENERGY i.e. SUN LIGHT. Use of Electric Power in decreasing and people are shifting towards use of Solar Power. Many subsidies are also being given by Indian Government on use of Solar Power.

3. Basis and presumptions

- i) The basis for calculation of production capacity has been taken on single shift basis on 75% efficiency.
- ii) The maximum capacity utilization on single sift basis for 300 days a year. During first year and second year of operations the capacity utilization is 60% and 80% respectively. The unit is expected to achieve full capacity utilization from the third yearonward.

- iii) The salary and wages, cost of raw materials, utilities, rent, etc. are base on the prevailing rates in and around Agra. These cost factors are likely to vary with time andlocation.
- iv) Interest on term loan and working capital loan must be preferably current rate. Otherwise, the rate of interest on an average may be taken as 13%. This rate may vary depending upon the policy of the financial institutions/agencies from time totime.
- v) The cost of machinery and equipments refer to a particular make / model and prices areapproximate.
- vi) The break-even point percentage indicated is of full capacity utilization.
- vii) The project preparation cost etc. whenever required could be considered under pre-operative expenses.
- viii) The essential production machinery and equipment required for the project have been indicated. The unit may also utilize common test facilities available at MNES, Solar EnergyCentre

4. Implementationschedule

The major activity in the implementation of the project has been listed and the average time for implementation of the project is estimated at 12 months:

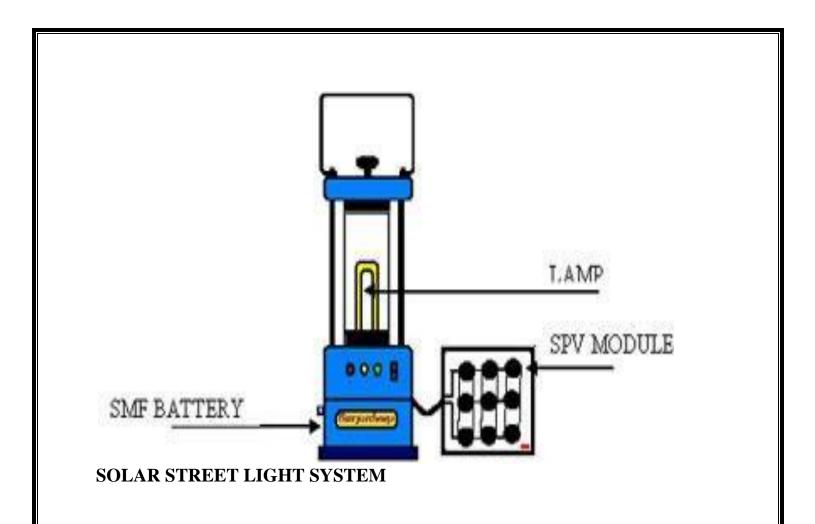
Period (in months) (suggestive)

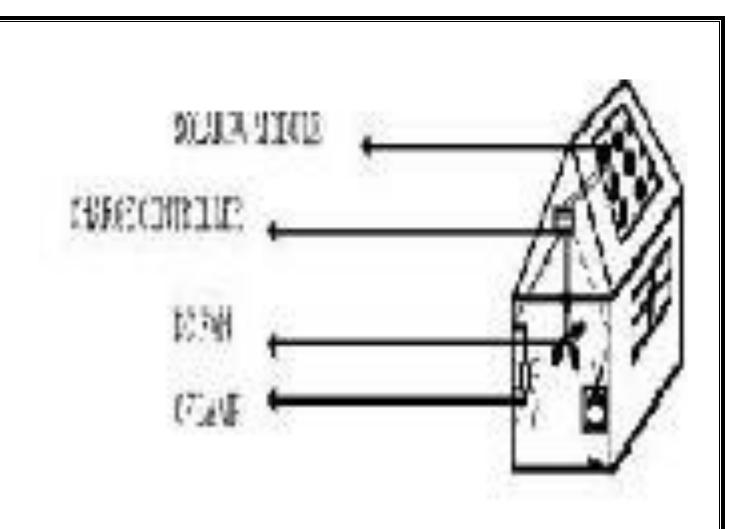
	T CITOG (III IIIOII)
1. Preparation ofprojectreport	1
2. Registration andother formalities	1
3. Sanction of loan byfinancialinstituti	ons 3
4. Plant &machinery	
a) Placement oforders	1
b) Procurement	2
c) Powerconnection/ Electrification	2
d) Installation/Erection ofmachinery	/
Test Equipment	2
5. Procurement ofraw material	2
6. Recruitment of Technical Personnel	etc. 2
7. Trial production	11
8. Commercial production	12
=	

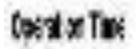
Note

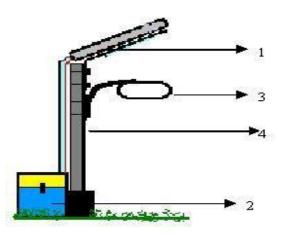
- 1. Many of the above activities shall be initiated concurrently
- 2. Procurement of raw materials commences of the 8th monthonwards.
- 3. When imported plant and machinery are required, the implementation period of project may vary from 12th to 15months.

5. TECHNICALASPECTS


I. Process of Manufacture


MAJORCOMPONENTS:


- 1. SOLAR PHOTOVOLTAICMODULE.
- 2. BATTERY.
- 3. BATTERYBOX.
- 4. CHARGECONTROLLER.
- 5. ELECTRONIC CIRCUIT & CONNECTINGWIRES.
- 6. CF LAMP.
- 7. DCFAN.


BRIEF DESCRIPTION OF ASSEMBLY PROCESS:

ALL THE MAJOR COMPONENTS ARE CONNECTED AS PER BELOW GIVEN DIAGRAM. After Assembly all products are tested as per MNES Specifications.

- 1. SPVModule
- 2. BatteryBox
- 3. Lamp with charge controller
- 4. Lamp Post

SOLAR STREET LIGHT SYSTEM

II. Quality Control and Standards

MNES SPECIFICATION 2006-2007

III. Production Capacity Per Annum

a. Qty : 24000 pieceseach

b. Value : Rs 66,00,00,000/- (Of AllThree)

IV. MotivePowerRequired : 5 KVA(Approx.)

V. PollutionControl

The Govt. accords utmost importance to control environmental pollution. The small-scale entrepreneurs should have an environmental friendly attitude and adopt pollution control measures by process modification and technology substitution.

India having acceded to the Montreal Protocol in sept. 1992, the production and use of Ozone Depleting Substances (ODS) like Chlorofluore Carbon (CFCs), Carbon Tetrachloride, Halons and methyl Chloroform etc. need to be phased out immediately with alternative chemical/solvents. A notification for detailed Rules to regulate ODS phase out under the Environment Protection Act, 1986 have been put in place with effect from 19th July2000.

The following steps are suggested which may help to control pollution in electronics industry wherever applicable:

- i) In electronic industry fumes and gases are released during hand soldering / wave soldering/Dip soldering, which are harmful to people as well as environmental and the end products. Alternate technologies may be used to phase out the existing polluting technologies. Numerous new fluxes have been developed containing 2-10% solids as apposed to the traditional 15-35% solids.
- ii) Electronic industry uses CFCs, Carbon Tetrachloride and Methyl Chloroform for cleaning of printed circuit boards after assembly to remove flux residues left after soldering, and various kinds of foams forpackaging.

Many alternative solvents could replace CFC-113 and methyl Chloroform in electronics cleaning. Other Chlorinated convents such as trichloroethylene, per chloroethylene and methylene chloride have been used an effective cleaners in electronics industry for many years. Other organic solvents such as ketenes and Alcohols are effective in removing both solder fluxes and many polar contaminants.

VI. Energy conservation

With the growing energy needs and shortage coupled with rising energy cost, a greater thrust in energy efficiency in industrial sector has been given by the Govt. of India since 1980s. The energy conservation Act 2001 has been enacted on 18th August 2001, which provides for efficient use of energy, its conservation & capacity building of Bureau of Energy Efficiency created under the Act.

The following steps may help for conservation of electrical energy:

- i) Adoption of energy conserving technologies, production Aids and testingfacilities.
- ii) Efficient management of process/manufacturing machineries and system, QC and testing equipment for yielding maximum energyconservation.
- iii) Optimum use of electrical energy for heating during soldering process can be obtained by using efficient temperature controlled soldering and disordering station.
- iv) Periodical maintenance of motors compressorsetc.
- v) Use of power factor correction capacitors. Proper selection and layout of lighting system; timely switching on-off of the lights; use of compact fluorescent lamps wherever possibleetc.

6. FINANCIALASPECTS

A. FixedCapital

(i) Land and Building

Built up area	1000 sq ft
Office	150 Sq ft
Stores	200 sq ft
Workshop	500 sq ft

Testing	150 sq ft
Rent payable/annum	Rs 2,40,000/-

(ii) Machinery and Equipment

S.No.	Description	Ind./Imp.	Qty.	Value (Rs)		
1.	Painting Booth with Paint Gun	Indian	1	1,00,000		
2.	Oven	Indian	1	50,000		
3.	Bench Drilling Machine	Indian	1	10000		
4.	30 MHZ Oscilloscope	Indian	1	25000		
5.	HM 5027 Harmonic Distortion Meter	Indian	1	15000		
6.	Frequency Meter	Indian	1	2000		
7.	Volt Meter	Indian	1	1000		
8.	Ampere Meter	Indian	1	1000		
9.	Power Factor Meter	Indian	1	2000		
10.	Watt Meter	Indian	1	3000		
11.	High Voltage Tester	Indian	1	8000		
12.	Earthing Terminal Tester	Indian	1	5000		
13.	DC Insulation Resistance Tester	Indian	1	5000		
14.	Leakage Current Tester	Indian	1	2000		
15.	Digital Clamp Meter	Indian	1	1000		
			Total	2,30,000		
	Other Fixed Assets			1,00,000		
	Electrification Charges @10% cost of machinery and equipment			23,000		
	Office equipments, furniture and working table etc.			1,00,000		
	Tools, Jigs & Fixtures etc.			50,000		
	Pre-operative expenses			50,000		
	Total					
	Total Fixed Capital (I + II)					

B. Working Capital Per Month:

(i) Staff &Labour

SI.	Designation	No. of persons	Salary/Month	Total salaryper
No.			(Rs.)	Month(Rs.)
1.	Skilled Workers	2	21000	42000
2.	Unskilled Workers	1	19000	19000
3.	Watchman/Peon	1	19000	19000
4.	Other Staff	1	20000	20000
5.	Manager	1	40000	40000
	+ Perquisites @ 15% of			21000
	salary			
			Total	1,61,000/-

(ii) Raw material permonth

S.No.	Description		Qty.	Value (Rs)
	-	Ind./Imp.	For All	
			three	
1	Indicating lamps	Indian	3000 Nos.	30000
2	Charge Controller Circuit	Indian	3000 Nos.	200000
3	Inverter Circuit	Indian	3000 Nos.	3000000
4	Connecting cords & plugs	Indian	3000 Nos	80000
5	Coils	Indian	3000 Nos	20000
6	Diodes	Indian	3000 set.	30000
7	Poles & Fixtures	Indian	2000 Nos	350000
8	Hardware, solder etc.	Indian	3000 Nos	13000
9	Knobs, switches & sockets	Indian	3000 set	66000
10	Batteries	Indian	3000 Nos.	1400000
11	DC Fans	Indian	1000 Nos.	30000
12	CFL's	Indian	3000 Nos.	273400
13	PV Modules	Indian	3000 Nos.	7500000
15	Cabinets	Indian	3000 Nos.	300000
			Total	13292400/-

(iii) Utilities andPower

Power	5KW	5000
Water		1000
	Total	6000

(iv) Other Contingent Expenses Per Month

1.	Rent	20000
2.	Potage & Stationary	1800
3.	Telephone/Telex/Fax charge	5000
4.	Repair and maintenance	2000
5.	Transport and conveyance charges	5000
6.	Advt. and publicity	3000
7.	Insurance and taxes	4400
8.	Miscellaneous expenditure 200	
	Total	61200

Total recurring expenditure per month (i + ii + iii + iv)

=Rs13520600/-

C. TOTAL CAPITALINVESTMENT

Fixed Capital	553000
Working Capital on 3 months basis	40561800
Total	41114800

D. FINANCIALANALYSIS

(I) COST OF PRODUCTION PERANNUM

Total recurring expenditure	162247200
Depreciation on machinery and equipment @ 10%	23000
Depreciation on tools, jigs, and fixtures @ 25%	12500

Depreciation on office equipment, furniture @ 20%	20000
Interest on total capital investment @ 13%	5344820
Total	27,74,29,900

(II) TERNOVER PERANNUM

Item	Qty.	Rate/Unit	Total Sales
	(Nos)		
Solar Lantern	12000	Rs. 1975/- each	2,37,00,000
Solar Street Light	12000	Rs.8000/- each	9,60,000,00
System			
Solar Home Light	12000	Rs. 14000/- each	16,80,00000
System			
		Total	287,700,000

(III) PROFIT PER ANNUM (BEFORETAXES)=

(Turn over per annum - Cost of production per annum)

= 28,71,20,000 -27,74,30000

= Rs.96,90,000/-

Profit ratio = (Profit/annum) x 100

(Sales / annum)

= 96,90,000 x 100

28,71,20000

= 3.4 %

Rate of return = Profit/annum x 100

Total Capitalinvestment

= 96,90,000x100

4,11,14,000

= 23.6 %

D. Break Even Point

Fixed Cost perannum

Rent	240000
Depreciation on machinery and equipment @ 10%	23000
Depreciation on tools, jigs, and fixtures @ 25%	12500
Depreciation on office equipment, furniture @ 20%	20000
Interest on total capital investment @ 16%	8788000
Insurance	52800
40% salaries & wages	772800
40% other contingent & utilities	176640
(including rent & insurance)	
Total Fixed cost	10085740
SAY	10085700

BreakEvenPoint = Fixed Cost x 100 Fixed Cost+Profit

=

 $\frac{10085700x100}{775700}19$

= 51.00%

Additional Information

- a. The project profile may be modified/ tailored to suit the individual entrepreneurship qualities/capacity, production programme and also to suit the location characteristics, whereverapplicable.
- b. The Electronics Technology is undergoing rapid strides of change and there is need for regular monitoring of the national and international technology scenario .The unit may, therefore ,abreast with the new technologies in order to keep them in pace with the developments for global competition.
- c. Quality today is not only confined to the product or service alone. It also extends to the process and environment in which they are generated. The ISO 9000 defines standards for quality Management System and ISO 14001 defines standards for Environmental Management System for acceptability at environment level. The unit may therefore adopt these standards for globalcompetition.
- d. The margin money recommended is 25% of the working capital requirement at an average .However the percentage of margin money may vary as per bank's discretion.

Name and address of Machinery & Equipment Suppliers

- M/s Atlas Engineeringworks
 Devan Hall
 ChandiChowk , Delhi 6
- M/s Automatic Electric Ltd Rectifier House, P B No. 7103 Mumbai-400031
- 3. M/s Bergen Associates Pvt Ltd 1082, Sector27-B Chandigarh-19
- 4. M/s Eastern Industries 203, Shree Ram Industrial Estate Naigaon Road, Madala Mumbai
- 5. M/s Eigi Equipment (P)Ltd India House, Trichy Road, Coimbatore -1
- 6. M/s EM Electronics Pvt Ltd 158,III Main Industrial Town Rajaji Nagar,Bangalore-560004
- 7. Hinditron Computers (P) Ltd Eros Cinema Building ,5th Floor 42,Maharshi Karve Road, Church Gate,Mumbai-400020
- 8. M/s HMT Ltd 31, Choringhee, Kolkata-700016
- 9. JaymesEngg. Co. Pvt. Ltd M- Block, Connaught Place, NewDelhi

M/s Lamp Machinery & Components MfgCo.
 Bake BihariBoseRoad
 Ram Kristopur, P. B. No. 27
 Howrah-711010

11. M/s NGDR Ltd Byappanahalli Bangalore -560001

12. M/s Pelco Electronics and Electricals Ltd66, ShivajiMargNew Delhi-110105

13. M/s Perfect Machines Tools Co. Pvt Ltd17, KharvelNagarBhubaneshwar-1

14. M/s Prem Engineering Works Okhala IndustrialEstate New Delhi

15. M/s Quality MachinesTools N. R. Road Bangalore-560002

16. M/s R. H. Windsor (India) Ltd Plot E-16 VRoad Industrial Estate, Thane

17. M/s Super Cable Machines (I) Pvt Ltd ChandheryVilla,1, Shastri Nagar Ajmer-305001

18. M/s Swastic Machine Tools4, LataChambersNasik-422002

19. M/s Sysco Associates,

234, 11th Main, Malleswaram Bangalore-3

- 20. M/s Toshniwal Brothers (Delhi) PvtLtd 3E/8, Jhandewalan,Extn New Delhi-110055
- 21. M/s Traub India Ltd , Bombay Pune Road, Pune-411 018
- 22. M/s Wipro Computers (P) LtdNo. 10, Victoria Road,Bangalore

Name and address of Raw material suppliers

- 1. M/s Electronics Trade and Technology Dev. Corp.Ltd NewDelhi-21
- M/s Amar RadioCorp.
 11/1, ThiglarPoriyanna Lane, SSP Road, Bangalore-560002
- 3. M/s SouthernElectronics 113, Sadarpatrappa Road Bangalore-2
- 4. M/s Bharat Electronics Ltd Jalahalli Post Bangalore-560013
- M/s Contental Devices IndiaLtd C-120, Naraina Industrial Area NewDelhi-28
- 6. M/s HiprintCorporation
 29, New Okhala Industrial Complex
 Phase-1, New Delhi-20
- 7. M/s Precision Electronics Ltd Unit-1, 1-9E,DLF Industrial Area, Faridabad-1210